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Simple Treatment of Multi-Term Dispersion in FDTD

M. Okoniewski,Member, IEEE M. Mrozowski, Member, IEEE and M. A. Stuchly Fellow, IEEE

Abstract—Three new simple and efficient algorithms are pro- IIl. FORMULATION AND DISCRETIZATION
posed for the numerical treatment of the multi-term Debye or . . .
Lorentz dispersion in the FDTD method. The formulation is For both Debye or Lorentz media the relative permittivity
based on the auxiliary differential equation, but requires much C€an be expressed as
fewer operations than the published schemes. The approach is

equivalent to the best higher order recursive schemes in terms r g I
of memory and computational expense, but without the linearity €(w) = €00 + Z Mp—() 1)
assumptions. 7 AD,L\W

Index Terms—Dispersive dielectrics, FDTD. For Debye mediaVy, = AeAp; MD(w) =1+ jwr, and for

Lorentz mediaN;, = AeApw?; Mp(w) = w2 4 2jwé, — w?
|. INTRODUCTION where Ae = ¢, — 0, €, IS the static permittivity e, is the
rmittivity at infinite frequencyA,, is the pole amplituder,

N RECENT vyears, several techniques have emerged §t . ) . . .
y g ged 3 the relaxation timew, is the pole location, and, is the

modeling dispersive phenomena in media described ing fact
multi-pole Debye or Lorentz models. In the recursive con- 'r:nplngthac or. di the A , tion in the ti
volution (RC) approach (e.g., [1]-[3]), the exponential form "©°F ©Ither medium, he Ampere's equation in the tme

of the time-domain susceptibility function is used to replac%omaIn becomes

the convolution integral. The second-order accuracy in time is d

obtained in the piecewise linear recursive convolution (PLRC) ¥ * H(t) = GOGWEE“) +oE()+ (2)
[2] and the trapezoidal rule recursive convolution (TRC) r NE |

[3]. The recursive convolution (RC) techniques are difficult eOZ}"_l{jpr—’()E(w)}

to derive, require complex arithmetic, and assume that the P DL\

medium is linear. The second category of methods for higher d r

order dispersion utilizes auxiliary differential equations (ADE) = 6oeood—E(t) +oE(t) + Z Jp(t)

e o . ) t

linking the polarization vector and the electric flux density [4]. P

Since the medium does not have to be linear, the ADE metho
is particularly attractive for modeling nonlinear effects. Th
ADE method has identical accuracy and memory requireme
(for Lorentz media) as the PLRC. In its published formulatio
[4], this method requires solution of the system Bflinear MP J R ) 3
equations. This implies performing a matrix multiplication at b,L(W)p(w) = jweoNp, L E(w) @)

each time step, at a cost of at le@¥tP?) operations. A higher Thjs results in (for Debye and Lorentz respectively):
order dispersion potentially can also be treated using the Z-

%erer(t) are the polarization currents. To find the relation
tween theJ ,(t) andE,(t) the inverse Fourier transform is
faken of the equations:

i - i i i d A, d 1
transform, but only a single-term dispersion has been described L PN Lt Y, ()
[5]. dt Tp dt Tp
In this letter, the ADE method is reformulated so that the 2 , . d ) d
solution of the system of linear equations is no longer neces- 5 Jp = cofew, Ao B — w3, = 26,53, (9)

sary. Three second-order algorithms for Debye and Lorentz
dispersion with O(P) numerical complexity are obtained.An equation similar to (4) was previously given in [7], but
These algorithms require fewer or equal number of unknowtie coefficients were likely in error, as the dimensions were
than the corresponding PLRC and TRC schemes. not correct.
Implementation in FDTD requires discretization of (2), (4),
and (5). All relevant quantities should be expressed in the
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10" Full time synchronism requires thg€Z)" is computed as

' (Entt — En—1)/(2At). This increases storage requirements,
as E"~! has to be back-stored. If the time synchronism
is compromised andE"™*! — E™)/At is used instead, the
additional back-storage is not necessary.

Before currents]];“f]L are computed, their update formulae
are used to expresg'+1/2 = 1(Jn+14 Jn)in (8). The result-
ing three schemes: 1) Debye ADE synchronized (DADES); 2)
Lorentz ADE Partially Synchronized (LADEP); and 3) Lorentz
ADE Synchronized (LADES) can be sketched as follows (cast
into a single pseudo-code):

—— Debye medium
- = = Lorentz medium — synchronized
m— Lorentz medium — partly synchronized

Reflection magnitude — error

For each field location:
Etrnp = En, En+1 = peEn +prnv X H1
Case (DADES)

_8 1 L L

0 ! 2 Freque?\cy[Hz] ¢ s Xm‘f For P = 1P En+1 En+1 - pm(k + 1)/2 Jn X
For = 1:P;
(a) I
Jrl = Lo prt gy 4k

0.025 T T T T T Case ZEI_ADEP)
§ : ; For p = 1:P;

.02 e : E::eﬁzmr::;‘:rm—synchronized """""" ] En+1 = En+1 _p"l(ap+1)/2 J]TJL _prngp/2 J]TJL_I ;
——  Lorentz medium — partly synchronized For p = 1:P;

0.015p

" ’7 e n n—1.
Tyt = (B = Bunp) + o) + &)
Case (LADEé
En-l—l _ En-l—l +meEn_l

0.01F

Phase error {rad)

For p = 1:P;
Ertl — pntl —pm(Oép-i-l)/Q Jg—pmé’p/2 J;L—l :
0.005F For p = 1 P
J;H-l (En-l-l En—l) + O‘pJg + SpJ;}_l;
. 2At
° end;
-0.005 ' ' ' ' where for DADES:p, = (1 - Aw)/’/ Pm = g/l/, andv =
’ 1 ’ - ! ® : Ato 1 x Ato
Frequency [Hz] «10" 14+ Dyt X = €ofoo +5 Ep [ ; LADEP: p. = (]_ — W)/V'
(b) Pm = %/l/, and VvV = 1+%, X = €0€oo =+ %E]I:"YPY

Fig. 1. Absolute errors in the reflection coefficient for all thred ADES: pe =(1- 2?”20 YV, Dm = (EA—;)/I/, andrv =
algorithms presented in the paper. (a) magnitude and (b) phase. Th At ! r *
Debye medium was represented by 3-pole muscle [6] with= 2046.4, ) — 1At Ep p-

foo = 43, Ac = €5 — oo, 11 = (5.2m) s, = (68077)—1,1,5, The algonthms require”, 2P+1 and 2P additional real

= 1 / — ~0 Ao/ — / — 4 . . . .

o= (46m)tns, AiAe = 1970, ApAe = 308, A3Ac = 413 yanaples per electric field components, respectively, for
and o = 0.106S. Lorentz medium was assumed as

P = 2,6, = 3, €00 = -1[)77 Grad/sw, = 100r DADES, LADES, and LADEP. The number of extra real

1.3,
Grad/s 81 = 0.1wp, b 0.1w 41 = 04, A, = 0.6. Spatial additions and multiplications is, respectivel3R), (5P),
resolution Az = 37.5um and 6P + 1). It can be noted that in terms of memory,
LADEP is equivalent to TRC (while it avoids its restrictions),
_ _ and LADES to PLRC. DADES saves one variable over
Tormula for CUrrentJ;)L—i—l. For a Debye medium, this reSUltSCorresponding PLRC scheme. It also appears that our

In algorithms require considerably fewer floating point operations
bl _ /3 _— . N than TRC and PLRC schemes.
Jy = AL L(EMT —E™) + kyJ) (7
wherek, = (1 - £25)/(1+ 5%) and 3, = coAed, 2 /(1 + lll. NUMERICAL RESULTS

2%2). For Lorentz media, the semi-implicit approach gives  Fig. 1 shows absolute errors in the magnitude and phase
of the reflection coefficient of the TEM wave incident from
i . 1 dEN" vacuum onto a dispersive media as compared to the analytical
ST = apdy + 60Tty <E) (8)  solution. As expected, the accuracy of LADEP deteriorates
as the frequency increases. As the time variation of field
becomes more rapid, the lack of synchronism decreases the

accuracy. On the other hand, the imperfect synchronization

2—-At%w? SpAt—1 2 2
wherea, = T5-=# & = o amr andyp = At"cAcd,w;,
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saves memory. The relative error norms in the three tests
arel.7-1073, 4.1-107%, 2.8 - 102 for the magnitude and
9.6 -107*, 2.1-1072, 6 - 103 for the phase and Debye,
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