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Simple Treatment of Multi-Term Dispersion in FDTD
M. Okoniewski,Member, IEEE, M. Mrozowski, Member, IEEE, and M. A. Stuchly,Fellow, IEEE

Abstract—Three new simple and efficient algorithms are pro-
posed for the numerical treatment of the multi-term Debye or
Lorentz dispersion in the FDTD method. The formulation is
based on the auxiliary differential equation, but requires much
fewer operations than the published schemes. The approach is
equivalent to the best higher order recursive schemes in terms
of memory and computational expense, but without the linearity
assumptions.

Index Terms—Dispersive dielectrics, FDTD.

I. INTRODUCTION

I N RECENT years, several techniques have emerged for
modeling dispersive phenomena in media described by

multi-pole Debye or Lorentz models. In the recursive con-
volution (RC) approach (e.g., [1]–[3]), the exponential form
of the time-domain susceptibility function is used to replace
the convolution integral. The second-order accuracy in time is
obtained in the piecewise linear recursive convolution (PLRC)
[2] and the trapezoidal rule recursive convolution (TRC)
[3]. The recursive convolution (RC) techniques are difficult
to derive, require complex arithmetic, and assume that the
medium is linear. The second category of methods for higher
order dispersion utilizes auxiliary differential equations (ADE)
linking the polarization vector and the electric flux density [4].
Since the medium does not have to be linear, the ADE method
is particularly attractive for modeling nonlinear effects. The
ADE method has identical accuracy and memory requirements
(for Lorentz media) as the PLRC. In its published formulation
[4], this method requires solution of the system oflinear
equations. This implies performing a matrix multiplication at
each time step, at a cost of at least operations. A higher
order dispersion potentially can also be treated using the Z-
transform, but only a single-term dispersion has been described
[5].

In this letter, the ADE method is reformulated so that the
solution of the system of linear equations is no longer neces-
sary. Three second-order algorithms for Debye and Lorentz
dispersion with numerical complexity are obtained.
These algorithms require fewer or equal number of unknowns
than the corresponding PLRC and TRC schemes.
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II. FORMULATION AND DISCRETIZATION

For both Debye or Lorentz media the relative permittivity
can be expressed as

(1)

For Debye media ; and for
Lorentz media ;
where is the static permittivity, is the
permittivity at infinite frequency, is the pole amplitude,
is the relaxation time, is the pole location, and is the
dumping factor.

For either medium, the Ampere’s equation in the time
domain becomes

(2)

where are the polarization currents. To find the relation
between the and the inverse Fourier transform is
taken of the equations:

(3)

This results in (for Debye and Lorentz respectively):

(4)

(5)

An equation similar to (4) was previously given in [7], but
the coefficients were likely in error, as the dimensions were
not correct.

Implementation in FDTD requires discretization of (2), (4),
and (5). All relevant quantities should be expressed in the
same instant of time:

(6)

For synchronism, the semi-implicit scheme is adopted, where
yet-to-be computed field is used to create an update
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(a)

(b)

Fig. 1. Absolute errors in the reflection coefficient for all three
algorithms presented in the paper. (a) magnitude and (b) phase. The
Debye medium was represented by 3-pole muscle [6] with�s = 2046:4,
�
1

= 4:3; �� = �s � �
1

, �1 = (5:2�)�1�s; �2 = (680�)�1�s,
�3 = (46�)�1ns, A1�� = 1970; A2�� = 30:8; A3�� = 41:3
and � = 0:106S. Lorentz medium was assumed as
P = 2; �s = 3; �

1
= 1:5; !1 = 40� Grad/s; !2 = 100�

Grad/s; �1 = 0:1!1; �2 = 0:1!2; A1 = 0:4; A2 = 0:6. Spatial
resolution�z = 37:5�m

formula for current . For a Debye medium, this results
in

(7)

where and

. For Lorentz media, the semi-implicit approach gives

(8)

where , and

Full time synchronism requires that is computed as
. This increases storage requirements,

as has to be back-stored. If the time synchronism
is compromised and is used instead, the
additional back-storage is not necessary.

Before currents are computed, their update formulae
are used to express in (8). The result-
ing three schemes: 1) Debye ADE synchronized (DADES); 2)
Lorentz ADE Partially Synchronized (LADEP); and 3) Lorentz
ADE Synchronized (LADES) can be sketched as follows (cast
into a single pseudo-code):

For each field location:
; ;

Case (DADES)
For :P; ;
For :P;

;

Case (LADEP)
For :P;

;
For :P;

;

Case (LADES)

For :P;
;

For :P;

;

end;

where for DADES: , , and

, ; LADEP: ,

, and , ;
LADES: , = , and

, .

The algorithms require and additional real
variables per electric field components, respectively, for
DADES, LADES, and LADEP. The number of extra real
additions and multiplications is, respectively, (), ( ),
and ( ). It can be noted that in terms of memory,
LADEP is equivalent to TRC (while it avoids its restrictions),
and LADES to PLRC. DADES saves one variable over
corresponding PLRC scheme. It also appears that our
algorithms require considerably fewer floating point operations
than TRC and PLRC schemes.

III. N UMERICAL RESULTS

Fig. 1 shows absolute errors in the magnitude and phase
of the reflection coefficient of the TEM wave incident from
vacuum onto a dispersive media as compared to the analytical
solution. As expected, the accuracy of LADEP deteriorates
as the frequency increases. As the time variation of field
becomes more rapid, the lack of synchronism decreases the
accuracy. On the other hand, the imperfect synchronization
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saves memory. The relative error norms in the three tests
are , , for the magnitude and

, for the phase and Debye,
Lorentz fully synchronized, and Lorentz partly synchronized
algorithms, respectively.

IV. CONCLUSIONS

Three simple algorithms for dealing withth-order Debye
and Lorentz dispersion were derived based on the ADE ap-
proach. The algorithms are faster than previous formulations of
ADE technique. Not only do they require fewer computational
resources than the recursive convolutions schemes, but also
they are much simpler to derive, use only real arithmetic, and
do not impose the linearity constraint.
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